Angelini, TE, Hannezo E, Trepat X, Marquezd M, Fredberg JJ, Weitz DA. Glass-like dynamics of collective cell migration. Proc Natl Acad Sci. 2011; 108(12):4714–719.
Article
ADS
Google Scholar
Applegate, MB, Coburn J, Partlow BP, Moreau JE, Mondia JP, Marelli B, Kaplan DL, Omenetto FG. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc Natl Acad Sci. 2015; 112:12052.
Article
ADS
Google Scholar
Bazelliéres, E, Conte V, Elosegui-Artola A, Serra-Picamal X, Morcillo MB, Roca-Cusachs P, Mun̈oz JJ, Sales-Pardo M, Guimerá R, Trepat X. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015; 17:409. doi:10.1038/ncb3135.
Article
Google Scholar
Bergert, M, Chandradoss SD, Desai RA, Paluch E. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci USA. 2012; 109(36):14434–39.
Article
ADS
Google Scholar
Bi, D, Lopez JH, Schwarz JM, Manning LM. A density-independent rigidity transition in biological tissues. Nat Phys. 2015; 11:1074. doi:10.1038/nphys3471.
Article
Google Scholar
Brugués, A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Mun̈oz JJ, Brodland GW, Ladoux B, Trepat X. Forces driving epithelial wound healing. Nat Phys. 2014; 10:683. doi:10.1038/nphys3040.
Article
Google Scholar
Carey, SP, Rahman A, Kraning-Rush CM, Romero B, Somasegar S, Torre OM, Williams RM, Reinhart-King CA. Comparative mechanisms of cancer cell migration through 3d matrix and physiological microtracks. Am J of Physiology - Cell Physiology. 2015; 308(6):436. doi:10.1152/ajpcell.00225.2014.
Article
Google Scholar
Christiansen, JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006; 66:8319.
Article
Google Scholar
Conklin, MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Path. 2011; 178(3):1221. doi:10.1016/j.ajpath.2010.11.076.
DeForest, CA, Anseth KS. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem. 2011; 3:925.
Article
Google Scholar
Deforet, M, Hakim V, Yevick HG, Duclos G, Solberzan P. Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat Commun. 2014; 5:3747.
Article
ADS
Google Scholar
Doyle, AD, Carvajal N, Jin A, Matsumoto K, Yamada KM. Local 3d matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat Comm. 2015; 6:8720. doi:10.1038/ncomms9720.
Article
ADS
Google Scholar
Friedl, P, Bröcker EB. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci. 2000; 57(2):41–64.
Article
Google Scholar
Friedl, P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009; 10:445.
Article
Google Scholar
Friedl, P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012; 14(8):777.
Article
Google Scholar
Giri, A, Bajpai S, Trenton N, Jayatilaka H, Longmore GD, Wirtz D. The arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. Faseb J. 2013; 27:4089.
Article
Google Scholar
Gjorevski, N, Piotrowski A, Varner VD, Nelson CM. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep. 2015; 5:11458. doi:10.1038/srep11458.
Article
ADS
Google Scholar
Gong, X, Lin C, Cheng J, Su J, Zhao H, Liu T, Wen X, Zhao P. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE. 2015; 10(6):0130348. doi:10.1371/journal.pone.0130348.
Google Scholar
Grinnell, F, Petroll WM. Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol. 2010; 26:335–61.
Article
Google Scholar
Guo, C, Kaufman LJ. Flow and magnetic field induced collagen alignment. Biomaterials. 2007; 28(6):1105. doi:10.1016/j.biomaterials.2006.10.010.
Article
Google Scholar
Hahn, MS, Miller JS, West JL. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater. 2006; 18:2679.
Article
Google Scholar
Han, C, Takayama S, Park J. Formation and manipulation of cell spheroids using a density adjusted peg/dex aqueous two phase system. Sci Reports. 2015; 5(11891). doi:10.1038/srep11891.
Hirschhaeuser, F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotech. 2010; 148:3. doi:10.1016/j.jbiotec.2010.01.012.
Article
Google Scholar
Huang, Y, Agrawal B, Sun D, Kuo JS, Williams JC. Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. Biomicrofluidics. 2011; 5(1):013412. doi:10.1063/1.3555195.
Article
Google Scholar
Hunter, KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Brest Cancer Res. 2008; 10(Suppl 1):2.
Article
Google Scholar
Inch, WR, McCredie JA, Sutherland RM. Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. Growth. 1970; 34:271.
Google Scholar
Junttila, MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013; 501:346. doi:10.1038/nature12626.
Article
ADS
Google Scholar
Kim, D, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. J Cell Biol. 2012; 197(3):351. doi:10.1083/jcb.201108062.
Article
Google Scholar
Kim, J, Jones CAR, Groves N, Sun B. Three-dimensional reflectance traction microscopy. PLoS ONE. 2016; 11(6):0156797.
Google Scholar
Kloxin, AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009; 324:59.
Article
ADS
Google Scholar
Lee, J, Abdeen AA, Whcislo KL, Fan TM, Kilian KA. Interfacial geometry dictates cancer cell tumorigenicity. Nat Materials. 2016; 15:865. doi:10.1038/nmat4610.
ADS
Google Scholar
Liang, L, Jones CAR, Chen S, Sun B, Jiao Y. Heterogeneous force network in 3d cellularized collagen networks. Phys Biol. 2016; 13:066001.
Article
ADS
Google Scholar
Liu, L, Doclos G, Sun B, Lee J, Wu A, Kam Y, Sontag E, Stone H, Sturm JC, Gatenby R, Austin RH. Minimization of thermodynamic costs in cancer cell invasion. Proc Nat Acad Sci. 2013; 110(5):1686–91.
Article
ADS
Google Scholar
Liu, L, Sun B, Pedersen J, Koh-Meng, Getzenberg RH, Stone HA, Austin RH. Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. Proc Nat Acad Sci. 2011; 108:6853–856.
Article
ADS
Google Scholar
Ma, X, Schickel ME, Stevenson MD, Sarang-Sieminski AL, Gooch KJ, Ghadiali SN, Hart RT. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys J. 2013; 104:1410–18.
Article
Google Scholar
Mahmud, G, Bishop CJCKJM, Komarova YA, Chaga O, Soh S, Huda S, Kandere-Grzybowska K, Grzybowski BA. Directing cell motions on micropatterned ratchets. Nat Phys. 2009; 5:606. doi:10.1038/NPHYS1306.
Article
Google Scholar
Maruthamuthu, V, Sabass B, Schwarz US, Gardel ML. Cell-ecm traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci. 2011; 108(12):4708.
Article
ADS
Google Scholar
McCredie, JA, Sutherland RM, Inch WR. Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. J Natl Cancer Inst. 1971; 46:113.
Google Scholar
Nelson, CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 2006; 314:298. doi:10.1126/science.1131000.
Article
ADS
Google Scholar
Notbohm, J, Banerjee S, Utuje KJC, Gweon B, Jang H, Park Y, Shin J, Butler JP, Fredberg JJ, Marchetti MC. Cellular contraction and polarization drive collective cellular motion. Biophys J. 2016; 110:2729.
Article
Google Scholar
Petrie, RJ, Gavara N, chadwick RS, Yamada KM. Nonpolarized signaling reveals two distinct modes of 3d cell migration. J Cell Biol. 2012; 197(3):439.
Article
Google Scholar
Petrie, RJ, Yamada KM. At the leading edge of three-dimensional cell migration. J Cell Sci. 2013; 125:1–10.
Google Scholar
Poujade, M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci. 2007; 104(41):15988–93.
Article
ADS
Google Scholar
Provenzano, PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006; 4(38):1221. doi:10.1186/1741-7015-4-38.
Google Scholar
Rape, AD, Guo WH, Wang YL. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials. 2011; 32:2043.
Article
Google Scholar
Ravasio, A, Cheddadi I, Chen T, Pereira T, Ong HT, Bertocchi C, Brugues A, Jacinto A, Kabla AJ, Toyama Y, Trepat X, Gov N, de Almeida LN, Ladoux B. Gap geometry dictates epithelial closure efficiency. Nat Comm. 2015; 6(7683). doi:10.1038/ncomms8683.
Shin, Y, Kim H, Han S, Won J, Lee E, Kamm RD, Kim J, Chung S. Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion. Adv Healthc Mater. 2014; 2(6):790. doi:10.1002/adhm.201200320.
Article
Google Scholar
Singhvi, R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, Whitesides GM, Ingber DE. Engineering cell shape and function. Science. 1994; 264(5159):696. doi:10.1126/science.8171320.
Article
ADS
Google Scholar
Sun, B, Lembong J, Normand V, Rogers M, Stone HA. The spatial-temporal dynamics of collective chemosensing. Proc Nat Aca Sci. 2012; 109(20):7759–764.
Article
ADS
Google Scholar
Theveneau, E, Steventon B, Scarpa E, Garcia S, Trepat X, Streit A, Mayor R. Chase-and-run between adjacent cell populations promotes directional collective migration. Nat Cell Biol. 2013; 15(7):763–72.
Article
Google Scholar
Timmins, NE, Nielsen LK. Tissue Engineering.New York: Springer; 2007, p. 141. Chap. 10.
Google Scholar
Valencia, AMJ, Wu P, Yogurtcu ON, Rao P, DiGiacomo J, Godet I, He L, Lee M, Gilkes D, Sun SX, Wirtz D. Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget. 2015; 6(41):43438.
Article
Google Scholar
Varner, VD, Nelson CM. Toward the directed self-assembly of engineered tissues. Ann Rev Chem Biomol Eng. 2014; 5:507. doi:10.1146/annurev-chembioeng-060713-040016.
Article
Google Scholar
Villar, G, Graham AD, Bayley H. A tissue-like printed material. Science. 2013; 340:48. doi:10.1126/science.1229495.
Article
ADS
Google Scholar
Wang, H, Abhilash AS, Chen CS, Wells RG, Shenoy VB. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys J. 2014; 107:2592.
Article
Google Scholar
Weiswald, L, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015; 17(1):1. doi:10.1016/j.neo.2014.12.004.
Article
Google Scholar
Yanagawa, F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther. 2016; 3:45. doi:10.1016/j.reth.2016.02.007.
Article
Google Scholar
Zimmermann, J, Camley BA, Rappel W, Levine H. Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues. Proc Natl Acad Sci. 2016; 113(10):2660. doi:10.1073/pnas.1522330113.
Article
ADS
Google Scholar