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Abstract

Background: The physics of cancer dormancy, the time between initial cancer
treatment and re-emergence after a protracted period, is a puzzle. Cancer cells interact
with host cells via complex, non-linear population dynamics, which can lead to very
non-intuitive but perhaps deterministic and understandable progression dynamics of
cancer and dormancy.

Results: We explore here the dynamics of host-cancer cell populations in the
presence of (1) payoffs gradients and (2) perturbations due to cell migration.

Conclusions: We determine to what extent the time-dependence of the populations
can be quantitively understood in spite of the underlying complexity of the individual
agents and model the phenomena of dormancy.
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Background
Dormancy is the relatively long period between treatment for cancer and the progression
(return) and spreading of the cancer. After initial surgery and/or chemotherapy, the can-
cer apparently ceases to grow and is said to be in remission, or dormancy if the period is
substantially longer than typical progression times for that cancer and treatment. Unfor-
tunately often the cancer after this dormant period ends is resistant to the initial therapy
that was used. We do not address the emergence of resistance here but rather the dynam-
ics of dormancy and progression, although the emergence of resistance is a critical part
of cancer progression (Han et al.2016).

The main focus of this work in connecting cancer emergence and dormancy is the pro-
posed phenomena of criticality in interacting cancer cell dynamics. Criticality has been
used to describe many slow-driven, interaction-dominated, threshold dynamical systems
(Jensen1998) including evolution (Raup1994) and morphogenesis (Krotov et al.2014).
Near the threshold of criticality strong amplification of fluctuations emerges in response
to external perturbations (Sornette2000). In a finite system exhibiting noncritical behav-
ior, the distribution of systematic response to external perturbation can be characterized
by the moments of mean and variance.. However, in critical systems, probability distribu-
tions of response follow power law decays,P(s) � sŠb. If the distribution has •thick tailsŽ,
that is with power-law coefficientsb < 3, then the mean and variance do not exist. In
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that case, external perturbation can lead to a response of any size (Yang2004). We pro-
pose that dormancy and recurrence is a criticality problem, and use a game theoretical
approach to analytically describe the phenomena.

Methods
Simulations of Game Theory popualtion dynamics were run on a MacPro utilizing a 3.7
GHz Quad-Core Intel Xeon E5 processor. The coding was done using MaTLab 2016b.

Results: population dynamics in interacting Cancer/Host cell populations
In order to characterize mixed population dynamics some sort of simple model is nec-
essary, we have chosen game theory (Axelrod et al.2006). Although game theory may
ignore many critical details (Adami et al.2016), it is a beginning step towards address-
ing criticality in cancer. A simple evolutionary game model which includes the influence
of different cell types on each other involves coupled ordinary non-linear differential
equations (Maynard Smith1982; Durrett and Levin1994). First, we assume that when we
can break a heterogenous tumor up intoN small subpopulations and each subpopulationj
is locally homogeneous in 2 different cell types. The local population of cancer cells
(� j ) and stromal cells (� j ) within the jth subpopulation can be described by the ordinary
non-linear differential equations:

d� j

dt
= (Ajp� j + Bjp� j)� j (1)

d� j

dt
= (Cjp� j + Djp� j)� j (2)

where p� j = � j
� j+ � j

and p� j = � j
� j+ � j

. The payoff coefficients,Aj, Bj, Cj and Dj have very
transparent physical interpretations: they represent the result of pairwise interactions
between cells in latticej. Sincep� j + p� j = 1, the dependence of the cancer cell fractional
population p� j can be written as:

dp� j

dt
= p� j(1 Š p� j)

[
(Aj Š Cj)p� j + (Bj Š Dj)(1 Š p� j)

]
(3)

There are two obvious fixed points in the flow of the fraction of� cells versus time,
p�

� = 1,p�
� = 0, these two fixed points simply represent an initially pure� or � pop-

ulation which cannot change in composition. However, in general there are four more
principal end points for the progression of the tumor. Two of them are straightforward:
(1) If (Aj Š Cj) < 0 and (Bj Š Dj) < 0, host cells� win over cancer cells� (this is
called prisoner•s dilemma in Game Theory jargon), in our case the cancer cells are out-
competed by the host cells, perhaps by immunosurveilance or impaired vascularization
amongst other reasons; (2) if(Aj Š Cj) > 0 and (Bj Š Dj) > 0, cancer cells� win
over host cells� (this is called harmony in Game Theory jargon, but alas here the •har-
monyŽ means that cancer cells out-compete the host cells and then recurrence emerges).
In both the prisoners•s dilemma and harmony outcomes, at infinite time only one cell
type remains.
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There are two other fixed points with non-zero numbers of both� cells and� cells
which give rise to stationary values. The fraction of cancer cells� at this fixed point is:

�p�
� j =

1

1 Š AjŠCj
BjŠDj

(4)

However, If Aj Š Cj > 0,Bj Š Dj < 0 this is an unstable fixed point and sensitive
to perturbations. Since this point is unstable there is no residence time of the system at
this point (this is known as a stag-hunt in Game Theory jargon). If(Aj Š Cj) < 0,(Bj Š
Dj) > 0 the fixed point is stable. This case is called the hawk-dove game in Game Theory
jargon, it is the only one allowing for stable coexistence of two populations. In terms
of cancer population dynamics you would like to have coefficients such that optimally
(Aj Š Cj) < 0,(Bj Š Dj) < 0, or at least(Aj Š Cj) < 0,(Bj Š Dj) > 0 so that the� /� ratio
does not diverge. Figure1 presents graphically these population stability landscapes as a
function of the pay-off matrix values.

It is a reasonable assumption that payoffs at neighboring subpopulations (j vs. j + 1)
change incrementally. Experimental evidence of payoff gradients has been demonstrated
in a co-culture system of multiple myeloma and stromal cells within a linear drug gra-
dient landscape (Wu et al.2014). Here we will discuss two game transition scenarios
across the landscapes of payoffs: (1) from cancer wins to stable coexistence, (2) from
host wins, unstable bifurcation to cancer wins. First, as shown in Fig.2a, the payoffs
A,B,C,D are equal to 0.3, 0.2,Š0.3,Š0.2 at position 0, and the payoffs change linearly
to Š0.1, 0.4, 0.1,Š0.3 at position 1. Based on the payoffs coefficients at each positionj, we
can calculate which quadrant (the type of game) in Fig.1 can represent the latticej. The
phase plane of cancer cell density vs. host cell density in Fig.2b and the dynamics of can-
cer fraction in Fig.2c shows cancer cells win at position 0 and 0.5 and coexist with host
cells at position 1 independent of initial population densities. Secondly, in Fig.3, the pay-
offs A,B,C,D are equal to 0.1,Š0.3, 0.4, 0.1 at position 0, and the payoffs change linearly
to 0.3, 0.2,Š0.3,Š0.1 at position 1. Since we sweep through the unstable bifurcation zone

Fig. 1 A 3D stability plot. The vertical axis encodes initial fraction of� cells. The 2 planar axes areA Š C
andB Š D parameters. The planar part shows the division into four quadrants which give rise to different
scenarios for the fixed points. The blue surface represents the surfaces of unstable fixed points, and the
brown surface represents the surfaces of stable fixed points
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Fig. 2 Payoffs Cancer wins (CW) to stable coexistence (SC) Blue: cancer wins (case 1), light blue: cancer wins
(case 2), orange: stable coexisistence.a Payoffs vs. position.b The phase plane of cancer cell density vs. host
cell density. The arrows indicate the fitness at given populations and payoffs.c Cancer fraction vs. time. Solid
line: initial cancer fraction is 0.02. Dotted line: initial cancer fraction is 0.85

in this case, whether cancer will win becomes sensitive to initial population fraction, as
shown black lines in Fig.3b andc.

Integration of Eq. (3) yields the equilibration time� it takes for these fixed points to be
approached:

� =
∫ pfin

pin

dp
p(1 Š p)((A Š C)p + (B Š D)(1 Š p))

(5)

ba

c

Fig. 3 Unstable bifurcation (UB) to cancer wins (CW) Red: host wins, black: unstable bifurcation, blue: cancer
wins.a Payoffs vs. position.b The phase plane of cancer cell density vs. host cell density. The arrows indicate
the fitness at given populations and payoffs.c Cancer fraction vs. time. Solid line: initial cancer fraction is 0.02.
Dotted line: initial cancer fraction is 0.85
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Near the stable and unstable fixed points� diverges, the systems slows down and crit-
icality may occur. In the case of the unstable fixed point (the stag-hunt), we can identify
the dormancy period as the time spent in the vicinity of the unstable fixed point, and the
recurrence of the cancer as the population moves away from the unstable fixed point. On
the other hand, if the system has matrix elements such that we are in a hawk-dove quad-
rant the cancer while not •curedŽ (which is the prisoner•s dilemma end-point) but rather
the cancer cells are in a stable equilibrium: chronically present but not life threatening, a
region of permanent dormancy.

In the basic model presented above, we assumed each latticej of tumor is a closed
and homogenous region, no exchange of cells is involved. To gain more physiological
relevance, we introduce cancer cell migration between lattices as a perturbation to the
system. Such perturbation can also be a format of temporal varying payoffs, which are not
discussed in this work.

At each time point, we assume cancer cells migrate with probabilitiesm+ (to the right
neighboring lattice) andmŠ (to the left neighboring lattice), and the migration of host
cells are negligible. The equation of cancer cell density� becomes:

� j(t + 1) = � j(t) + dt
[
Ajp� j(t) + Bjp� j(t)

]
� j (t) + Mj(t) (6)

where migration term is:

Mj(t) = Š
[
mŠ

j (t) + m+
j (t)

]
Cj(t) +

[
mŠ

j+ 1(t)Cj+ 1(t) + m+
jŠ1(t)CjŠ1(t)

]
(7)

We assume here weak migration: that is we assumem+ and mŠ are normal random
distributed with a mean equal 0 and standard deviation equal 0.03. That means 99.7%
of simulated migration rates (percentage of cells migrate to neighboring lattices) is less
than 9%. The effect of migration on spatio-temporal dynamics of cancer is shown in
Figs.4 and5.

Discussion
In Fig. 4aand b, the payoffsA,B,C,D are equal to 0.22,Š0.1,Š0.22, 0.06, respectively at
x = 0.6 (where host wins, cancer fractionp � 0), and the payoffs change linearly to
0.28, 0.15,Š0.23,Š0.06 atx = 0.9 (where cancer wins, cancer fractionp � 1). As the
position is close to the vicinity of bifurcation regime (x = 0.65 in Fig.4a), equilibration
time to reach stationary state (� in Eq. 5) increases. For example,� = 15 at x = 0.9 as
cancer fraction reaches stationary statep� = 1, while � = 30 atx = 0.7. The migration
of cancer cells is simulated in Fig.4b, resulting a noisy pattern which is similar to Fig.4a.
In Fig. 4c and d, the payoffsA,B,C,D are equal to 0.08, 0.32,Š0.06,Š0.22, respectively
at x = 0.6 (where cancer wins, cancer fractionp � 1), and the payoffs change linearly
to Š0.08, 0.38, 0.06,Š0.28 atx = 0.9 (where host and cancer stably coexist, cancer frac-
tion p � 0.825). Likewise, same perturbation due to cancer cell migration as shown in
Fig.4d results in a noisy pattern similar to Fig.4c.

Figure 5 demonstrate the effect of migration on spatio-temporal dynamics of can-
cer in a critical state near the vicinity of unstable equilibrium (p � 0.5). The payoffs
A,B,C,D are equal to 0.14,Š0.11,Š0.01, 0.04 atx = 0.6, and the payoffs change linearly
to 0.26, 0.01, 0.11, 0.16 atx = 0.9. First of all, the system slows down near the equilibrium.
After 40 generations, cancer fraction slightly changes from 0.51 to 0.67 in Fig.5aand from
0.49 to 0.33 Fig.5c. After perturbation is introduced in Fig.5b andc, we observe the
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Fig. 4 Cancer fraction vs. space and time:a andc no migration,b andd with migration. The initial cancer
fraction is 0.02. Initial cancer fraction: 0.02.a andb Transitions from •host winsŽ to •unstable bifurcationŽ to
•cancer wins.Žc andd Transitions from •cancer winsŽ to •stable coexistenceŽ

a c

b d

Fig. 5 Cancer fraction vs. space and time in the vicinity of the unstable fix point (unstable bifurcation):a and
c no migration,b andd with migration.a andb Initial cancer fraction: 0.51.c andd Initial cancer fraction: 0.49
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amplification of fluctuation near the equilibrium. Within 40 generations, neighboring
lattices can be dominated by either cancerp � 1 or host cellsp � 0, exhibiting the
critical behavior, a perturbation response of any size.

Conclusions
Cancer dormancy is a slow-driven, interaction-dominated threshold system. Frequency
of breast cancer recurrence rate indicates while non-metastatic instance follows expo-
nential decay, metastatic instance may be a critical system which follows power
law. We modeled cancer dormancy inspired by evolutionary game theory, and found
that the payoffs modulated by microenvironmental factors (such as drug, oxygen,
nutrients) dictate the dynamics of cancer cells vs. host cells (including stromal and
immune cells). Perturbation (due to cancer cell migration) in the vicinity of equi-
librium is associated with the loss of global stability and may lead to recurrence of
metastatic cancer.

Much work remains to be done to map the landscape of the interaction coefficients and
classify between stable regime and unstable regime, here we provide a first step towards
identifying the dynamical signatures that could be used for prediction of emergence from
dormancy.

We hope that this work will inspire more measurements, improve predictive power of
cancer recurrence, and assist the control of cancer progression.
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